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1. INTRODUCTION 

One can rarely find an investor these days holding all of his/her assets in a 

isolation. From small to big, private to institutional investors as well as asset management 

firms everyone spread their wealth across multiple assets even multiple asset classes 

including equity, fixed income, foreign exchange, derivative products, etc. In other 

words, every financial market participant is likely to hold a portfolio. Therefore, portfolio 

dynamics and benefits are more relevant than ever. 

1.1 Practical objective 

 Undergraduate finance majors are likely to get exposure to Modern Portfolio 

Theory (MPT) developed by Harry Markowitz1 (1952). Classical MPT model introduces 

the concepts of diversification through combining imperfectly correlated assets as well as 

efficient frontiers. Standard portfolio courses build on MPT with later developments on 

the subject mostly from William Sharpe2 (1964) introducing Capital Asset Pricing Model 

(CAPM) and risk-reward measure – Sharpe Ratio, maximization of which is often used as 

objective function in portfolio optimization. 

 Introductory portfolio courses serve their purpose by providing fundamental 

understanding on how investment portfolios are constructed. Unfortunately, such 

introduction is highly insufficient in any practical sense. Without further interest into the 

subject is essentially inapplicable in practice for two main reasons - oversimplification of 

exercise scenarios as well as invalidity classical model assumptions. 

 

Figure 1: Government Bond and Inflation Rates 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Markowitz, H.M. (March 1952). Portfolio Selection. The Journal of Finance 7 (1), 77-91 
2	  Sharpe, William F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk, 
Journal of Finance, 19 (3), 425–442	  
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Investment scenarios supplied by introductory textbooks are often based on too 

few constituents (frequently as little as two assets) and long only composition. While 

diversification gains can be successfully demonstrated with few assets, more optimal 

idiosyncratic risk reduction occurs when 50 or more assets are held in a portfolio. Short-

selling is another important component of a well diversified portfolio that can be used for 

both bearish bets as well as hedging or increasing market neutrality. This is particularly 

important for hedge funds. 

 Also we have to into account unrealistic MPT assumptions. Among the major 

model flaws are assumed normality, volatility and correlation stability over time, absence 
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of real performance measuring (accounting for diversification and optimization costs), 

infinite liquidity and unrestricted divisibility of assets, etc.  

 Practical objective of this paper will be to address some of the outlined Modern 

Portfolio Theory invalid assumptions that are within reasonable complexity as well as 

conduct empirical analysis and portfolio construction on a larger, more realistic scale. 

 1.2 Market objective 

 Motivation for this paper is also greatly impacted by current market environment. 

As outlined by International Monetary Fund World Economic Outlook, global interest 

rates and inflation was gradually decreasing since 1980’s (see Figure 1). However, over 

the last few years rates have dropped to critical levels. Earlier this year interest rates 

became negative in several markets including Germany (get source). This zero bound 

phenomenon beginning to result in a investment paradigm shift. With interest rates 

underperforming bonds are becoming absolete. Fixed rate securities historically served as 

a safety investment to balance out equity market fluctuations at the same time providing 

moderate and stable returns. However, bonds no longer can provide its usual function in 

the current environment. Therefore, there is a need among various investors to rethink 

their long-term asset allocation strategies. Without getting into complex structured 

products in order to engineer fixed cash-flow securities yielding higher rates, potential 

solution might be in efficient equity portfolio optimization with return stability and 

minimal risk in mind. 

 For this reason, alongside portfolio construction and MPT model extension, the 

secondary focus of this paper will be on portfolio optimization. I will conduct a survey of 
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various portfolio optimization methods and explore their behavior over time and different 

market environments. 

 Section 2 of this paper describes data and main variables used in this paper. 

Section 3 deals with risk and return modeling. Portfolio construction and optimization is 

done in Section 4. Finally, Section 5 presents concluding statements. 

2. DATA AND VARIABLES 

 Market data used in this paper consists of daily closing prices of 502 US equities 

from the current S&P 500 (SPX) Large-Cap Index universe. The data set has 2,516 

observations (trading days) covering the 10-year period from 09-01-2005 to 08-31-2015. 

Daily prices frequency ranges from 450 to 502 available stocks. This period was selected 

to reflect full economic cycle representing second half of the US mortgage boom leading 

into financial crisis of 2007-2008, followed by recession and recovery periods. Historical 

prices are obtained from Bloomberg Terminal. 

 Daily logarithmic returns are computed from daily prices as: 

𝑟! = ln(
𝑃!
𝑃!!!

) 

 Annualized volatility is calculated from 30-day (N) trailing returns assuming 252 

trading days as: 

𝑣𝑜𝑙 =   
252
𝑁 𝑟!!

!

!!!

 

Custom S&P 500 Index will be used to benchmark optimized portfolio 

performance. Daily index returns are computed as equal-weighted average of daily 
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constituent returns. Note: this index does not correspond to real S&P 500 Index as 

members of an actual index are not constant over time. 

3. MODELLING 

3.1 Return distribution 

Before we begin any portfolio modeling it is necessary to revisit the fundamental 

flaws of MPT stated in the introduction. Perhaps the biggest one is assumed normality. 

According Markowitz’s model, asset returns are supposed to follow normal (Gaussian) 

distribution. However, that is far from reality. Various empirical studies on the behavior 

of financial asset return time series collectively described as stylized facts3  refute 

normality by indicating pronounced higher moments as well as suggest returns being not 

independently and identically distributed random variables (i.i.d.). 

Financial return distributions can be characterized with fat tails and asymmetry. It 

is more likely for abnormal profits or losses to occur in financial time series than normal 

distribution implies. Also returns tend to be slightly left skewed suggesting higher 

probability of loss compared to gain. I.i.d. is rejected due to phenomenon know as 

volatility clustering meaning that volatility spikes (extreme returns) occur in bursts. See 

Figures 3.1 and 3.2 for demonstration of stylized facts for custom S&P 500 Index.  

Figure 3.1 compares empirical index return distribution to fitted normal 

distribution. Visually it is clear that custom index returns are non-normally distributed. 

Empirical returns cluster tighter around the mean, but have noticeable more pronounced 

tails. Figure 3.2 illustrates higher-level analysis of heavy tails. Vertical bars in this plot 

represent daily return moves of ± 2.326 standard deviations and higher. Assuming 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  Cont, R. (2001). “Empirical properties of asset returns: stylized facts and statistical issues”. Quantitative 
Finance. Volume 1 p.223-226 
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normality of returns, such events no higher than 1% chance of occurring on either tail. 

There are 29 positive and 69 negative extreme return moves empirically representing 

~1.17% and ~2.78% probability respectively. On either end probabilities are above their 

normal likelihood, with negative side being significantly higher that expected. This is 

once again in line with stylized characteristics. 

 

 The time series of returns is a foundation on which portfolio and risk models are 

built. Therefore, it is extremely important to recognize these errors and correct for them. 

If we were to build an investment portfolio based on return normality and then apply 

Gaussian risk models, we would put ourselves at great risk potentially underestimating 

frequency and magnitude of extreme events. And as previously noted most likely not the 

positive surprises. 

−0.10 −0.05 0.00 0.05 0.10

emprirical normal

Figure 3.1: S&P 500 return distribution
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 Finally, given misleading risk measures optimization itself loses efficiency and 

credibility, as risk is part of virtually every optimal portfolio consideration. Fortunately, 

there are other distributions at our disposal. 

 Given the stylized asset return time series characteristics, the optimal distribution 

to model equity returns should be flexible in terms of higher moments. The continuous 

density function should have skewness and kurtosis parameters. The list of potential 

candidate distributions is too long to list. However, having risk modeling as an end goal it 

is possible to focus on the most prominent ones. 

Financial literature on financial risk modeling suggests Generalized Hyperbolic 

Distribution (GHD) family as a superior alternative to normal distribution. Hu and 
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Figure 3.2: S&P 500 extreme returns



	   9	  

Kercheval (2007) argue that GHD and certain special cases of it produce more accurate 

asset return density model.4 

 The GHD is five parameter (λ, α, β, δ, μ) based density generating function.  

By manipulating these parameters responsible for class definition, shape, scale and 

location we can generate a spectrum of distributions capturing heavier tails, hence GDH 

being a family of distributions. Several special cases include: 

• Student’s t-distribution, with λ = -ν/2, α and β = 0, δ = ν1/2 (ν – degrees of 

freedom) 

• Hyperbolic distribution (HYP), with λ =1 

• Normal-inverse Gaussian (NIG), with λ = -1/2 

• Variance-gamma distribution, with δ = 0 

Density function, parameter scope, and parametrizations are defined as follows5: 

𝑔ℎ(𝑥; 𝜆,𝛼,𝛽, 𝛿, 𝜇) = 𝑎(𝜆,𝛼,𝛽, 𝛿)(𝛿^2+〖(𝑥 − 𝜇)^2)〗^((𝜆 − 1/2)/2)    ×

  𝐾_(𝜆 − 1/2)  (𝛼√(𝛿^2+ (𝑥 − 𝜇)^2  ))exp  (𝛽(𝑥 − 𝜇)  

𝑎 𝜆,𝛼,𝛽, 𝛿 =
(𝛼! − 𝛽!)!/!

2𝜋  𝛼!
!
!  𝛿!  𝐾!(𝛿 𝛼! − 𝛽!)

 

,where x is a random variable. Parameter range is defined as λ, μ ∈ R, δ > 0 and 0 ≤ |β| < 

α. Kλ function and additional parameters ζ and ξ are defined as well as some special case 

distributions derived by Prause (1997). Due to complex multi-parameter approximation 

and calibration, data fitting and parametrization is done with ‘ghyp’ library for R 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Hu, Wenbo., Alec Kercheval. (2007). Risk management with generalized hyperbolic distributions. FEA 
2007 Proceedings of the Fourth IASTED International Conference on Financial Engineering and 
Applications. p 19-24 
5 Prause, Karsten. (September 1997). Modeling Financial Data Using Generalized Hyperbolic 
Distributions. Freiburg Center For Data Analysis and Modeling 
<http://www.dms.umontreal.ca/~morales/docs/prause_ghe.pdf> 
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programming language. 

 Table 3.1 records summary of GHD fitting parameters and quality results. It 

appears in this scenario asymmetric normal inverse Gaussian distribution produces 

slightly better fit than other models as determined by highest Akaike Information 

Criterion (AIC) and log-likelihood measures. Other five parameters dented by Greek 

letters represent shape – λ and α-bar, location – μ, dispersion – σ, and skewness – γ. 

 

 

 

Model λ α bar μ σ γ AIC Log-
likelihood

NIG -0.500 0.283 0.001 0.014 -0.001 -15113 7561
GHD -0.521 0.280 0.001 0.014 -0.001 -15111 7561
t-dist -1.132 0.000 0.001 0.022 -0.002 -15095 7551
VG 0.771 0.000 0.002 0.013 -0.001 -15055 7531
HYP 1.000 0.000 0.002 0.013 -0.001 -15032 7520

Table 3.1

−0.10 −0.05 0.00 0.05 0.10

emprirical normal NIG

Figure 3.3: S&P 500 GHD return distributions
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 Figure 3.3 displays visual alignment of empirical, normal, and normal inverse 

Gaussian distributions. Density plot shows fairly similar curvature between empirical and 

NIG lines. Also referring to Figure 3.4 we can see value at risk (VaR) curve comparison 

for previously state distributions. NIG appears to produce much fatter tails assigning 

higher likelihood to far field events appropriate to real world asset return movement. This 

gives confidence to proceed with further risk and portfolio modeling having a more 

accurate representation of return processes than relying on the assumption of normality. 

Density plot overlaying all model curves is included in the Appendix section. 

 

4. PORTFOLIO 

 This section will go through long-short portfolio construction, optimization 

techniques, and risk measures. Unfortunately, due to computational limitations only more 
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Figure 3.4: S&P 500 GHD VaR
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basic numeric examples will be provided. More complex optimization techniques will be 

conducted on a small subset of S&P 500 Index constituents. 

 First, we begin with the Modern Portfolio Theory cornerstone that is empirical 

exploration of gains from diversification of a large-scale portfolio. Equal-weighted 

standard deviation of 503 individual stocks over the entire observed time period amounts 

to 22.41%. Same stocks also held in equal share in a portfolio exhibit overall 14.54% 

standard deviation covering the same period of time. That is a realized 35% reduction in 

risk. 

 Building on the work of Markowitz, the next step is to compute global minimum 

variance (GMW) portfolio and evaluate return and volatility performance. Standard 

deviation of this long/short GMV portfolio was realized at 4.70% or another 68% 

decrease in overall risk and 79% total risk reduction from isolated individual index 

members. This dramatic risk reduction was achieved without any sacrifices in relative 

cumulative performance. Figure 4.1 shows wealth trend of $1 invested in both equal-

weighted S&P 500 Index and GMV Portfolio. This net long portfolio with roughly equal 

number of long and short position performed exceptionally well during crisis period 

when it suffered only 4.47% theoretical loss compared to 29.23% loss for S&P 500 

index. Short hedge implementation increasing portfolio’s market neutrality speaks for 

itself. 

 The following Figure 4.2 visualizes annual volatility of long/short GMV relative 

to S&P 500 Index. The graph is completely red. The optimized portfolio outperforms 

non-optimized portfolio in terms return movement 100% of the time. This short-side 
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enabled introductory level optimization problem applied to sufficiently large-scale data 

strongly promotes benefits of statistical analysis for performance gains. 
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S&P 500 GWM Port

Figure 4.1: S&P 500 and GMW port performance

−0.6

−0.4

−0.2

0.0

2006 2008 2010 2012 2014 2016

Figure 4.2: GMW Port vs. S&P 500 Index Volatility
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 It is perhaps a good time to talk about risk. Just a moment ago standard deviation 

was used to as a mean to measure risk of two portfolios as well as individual stocks. 

However, in practice standard deviation is rarely acceptable measure of risk. Earlier in 

this paper value at risk levels (VaR) were used to compare potential magnitude of a loss 

given a certain probability for different distributions. VaR is the risk measure of choice 

when it comes to teaching topics related to financial risks. Nevertheless, since 1999 after 

Philippe Artzner et. al. published a paper titled Coherent Measures of Risk6, VaR was 

being criticized for not being “coherent.” In this case coherence was defined by four 

desirable parameters – monotonicity, sub-additivity, homogeneity, and translation 

invariance. Out of four prerequisites VaR fails to satisfy sub-additivity. 

 However, upon declaring VaR incoherent Artzner provided a solution. He 

introduced a risk measure originally called Expected Shortfall (ES), but is more widely 

known these days as Conditional Value at Risk (CVaR). CVaR doesn’t only return 

minimum expected loss for a given alpha. It takes into account the entire tail and 

therefore, returns average VaR from 1-α to 1. ES is defined as follows: 

𝐸𝑆! = −
1
𝛼 𝐸 𝑋  1 !!!! + 𝑥!(𝛼 − 𝑃[𝑋 ≤ 𝑥!])  

 We can now apply CVaR to the two generated portfolios and model their risk. In 

the previous section NIG was determined produce the best fit to model asset returns. We 

will be using NIG density function to fit return profile of long/short GMV portfolio and 

compare its CVaR trend line with that of S&P 500 displayed in Figure 4.3. There seems 

to be some unexpected tail behavior related to S&P 500. CVaR curves for both NIG 

distributed and empirical returns (not in graph) exhibit distorted risk pattern that requires 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Artzner, Philippe et. al. (1999). Coherent Measures of Risk. Mathematical Finance 9 (3): 203 
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further investigation. On the other hand GMV portfolio shows impressive tail risk 

performance. 

 

As previously stated in the introduction, one of the objectives of this paper is to 

investigate whether or a particular optimization technique can produce equity return 

stream, similar to that of pre-zero-bound fixed income cash flows. The objective here is 

clear – generate moderate return levels with risk levels close to that of investment grade 

corporate bonds to replace low yielding current fixed income securities. This little GMV 

experiment produced a good starting and benchmarking point for further modeling. 

Ideally a optimization technique producing a portfolio with less than 3% standard 

deviation and annualized total returns in the 5-7% range. 

 Naturally an initial hypothesis at this point could be that there may not be a better 

optimization model to reduce risk than GMV as it already implies potentially minimum 
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Figure 4.3: CVaR with NIG distribution
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variance portfolio solution. Especially considering very solid theoretical performance. 

Note: GMV model produced in the previous example is not the most robust 

implementation. It does violate several of the stylized facts of asset return time series the 

most important one being assumption of constant correlation. 

 Current model generates variance covariance matrix based on the full return 

spectrum returning portfolio asset co-dependencies as of last observation date that remain 

constant going backwards in time. However, asset volatilities vary over-time in turn 

changing correlations in the system. 

 In order to address this violation, the use of time-varying volatility based models 

is advocated. According to literature, the best model to deal with time series of variance 

is a generalized autoregressive conditional heteroskedasticity7 (GARCH) model. The 

model is based on previously mentioned volatility clustering present in financial markets 

by which it returns conditional volatility with respect to time and event models it into the 

future. Therefore it is certainly outlining this potential upgrade to any portfolio 

optimization problem. However, due to its complexity it won’t be implemented in this 

paper. 

 Going back to the search of potential improvement over GMV portfolio 

optimization it appears a challenging task. Long/short GMV set a very high benchmark. 

Despite that several potentially competing optimization objectives come in mind. As 

CVaR measure was introduced with focus on the extreme event modeling, it does make 

sense to try to optimize for it. Maybe the solution is not the minimum overall variance, 

but rather left tail minimization. Another higher level variation of it could be maximizing 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Bollerslev, Tim. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of 
Econometrics 31 p307-327 
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left to right tail CVaR (minimum loss, maximum profit expectation). Finally, we can look 

into drawdown optimization. This in theory should behave similarly as GMV, since we 

are looking for flatter return structure. 

 As these more advanced probabilistic optimizing objectives are very 

computationally intensive, only portfolios containing about 10 stocks can be optimized 

on my system given the number of observations. So I have selected a random sample of 

10 stocks to form a test portfolio. Among the optimizations tested on the portfolio were 

GMV (for aligning purposes), long only GMV, and min CVaR long only. Figure 4.4 

displays the performance comparison between highest and lowest performing optimum 

portfolios. 

 

 Min CVaR portfolio is clear underdog in this case, while long/short GMV keeps 

the lead. Although, due to a low number of constituents selected insufficient 
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Figure 4.4:  GMW and Min CVaR port performance
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diversification is also apparent. GMV lost its flatter return pattern. In terms of volatility 

of these optimal portfolios, long/short GMV has then lowest standard deviation of 12.1% 

which is still lower that a full 500 stock equal-weighted index. Long only GMV (not 

displayed) is at slightly higher st.dev of 12.4% and lower cumulative return proving 

performance gains by shot hedging. Finally, with significantly lower return profile min 

CVaR portfolio also has a higher standard deviation of 13.5%. 

5. CONCLUSION 

 The search for bond-like equity portfolio unfortunately due to computational 

limitations did not yield very surprising results. Long/short GMV produced remained 

undefeated by both return and volatility patterns. Perhaps the final solution is to focus on 

robustness of GMV estimators (such as GARCH modeling), play around with additional 

constraints, introduce portfolio rebalancing, and even try out certain equity selection 

strategies rather than including the entire index universe. 
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APPENDIX A 
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